

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-8392

July 6, 2015

Dear Colleague:

The report of results for the Winter 2015 comparability study of the NIST/NIH Vitamin D Metabolites Quality Assurance Program (VitDQAP) is attached. The report presents a compilation of the results, which were evaluated for concordance within the participant community as well as trueness relative to the NIST value. Each participating laboratory was identified by a code number, which was provided on the packing sheet included with the samples. Please feel free to ask if you are unsure of your code number.

I appreciate your participation in this study. If you have any questions regarding this report, please contact me at <u>vitdqap@nist.gov</u>.

Sincerely,

Mary Bedner

Mary Bedner, Ph.D. Research Chemist VitDQAP Coordinator

Cc. C.A. Gonzalez R.D. van Zee S.A. Wise J.M. Betz P.M. Coates

NIST/NIH VITAMIN D METABOLITES QUALITY ASSURANCE PROGRAM REPORT OF PARTICIPANT RESULTS WINTER 2015 COMPARABILITY STUDY: EXERCISE 10

OVERVIEW OF THE WINTER 2015 STUDY

For the Winter 2015 comparability study of the VitDQAP, human serum control and study materials were distributed to participants for evaluation. SRM 968d Fat-Soluble Vitamins, Carotenoids, and Cholesterol in Human Serum Level 1 (SRM 968d L1) was provided as a control material for assay validation. For SRM 968d L1 (Control), the participants were provided the NIST target values within the data reporting sheet so that they could qualify their methods prior to analyzing the study samples. The study materials consisted of two vials, each containing a sample of pooled human serum. In this study, Vial A was SRM 972a Vitamin D Metabolites in Frozen Human Serum Level 2 (SRM 972a L2), and Vial B was VitDQAP-III, both of which contain endogenous levels of the vitamin D metabolites. Participants were asked to determine 25-hydroxyvitamin D in each of the human serum control and study samples. Individual concentration values for 25-hydroxyvitamin D₃ (25(OH)D₃), 25-hydroxyvitamin D₂ (25(OH)D₂), and 3-epi-25-hydroxyvitamin D (25(OH)D_{Total} = 25(OH)D₂ + 25(OH)D₃).

There were a total of 52 participants and 58 datasets (6 participants provided data from two methods) in the Winter 2015 comparability study. Eighteen (18) of the datasets originated from immunoassay (IA) techniques, including 12 from chemiluminescence immunoassay (CLIA), two from enzyme immunoassay (EIA), three from radioimmunoassay (RIA), and one from chemiluminescence enzyme immunoassay (ECLIA). **Appendix A-1** summarizes the IA methods used by the participants. Forty (40) of the datasets originated from liquid chromatographic (LC) methods; of those, 35 were from LC with tandem mass spectrometric detection (LC-MS/MS), one was from LC-MS, and four were from LC with ultraviolet absorbance detection (LC-UV). The LC-MS/MS and LC-MS methods are collectively referred to as LC-MSⁿ. A summary of the LC methods used by the participants may be found in **Appendices A-2** and **A-3**. (Note: The methodological information provided on the data reporting sheet was used to update the list from previous comparability studies. For prior participants that did not provide method details for the Winter 2015 study, the information in the appendices were not edited and may not be current.)

The raw data received from all participants are summarized in **Appendix B**. The IA methods do not distinguish between $25(OH)D_3$ and $25(OH)D_2$, and hence IA participants reported single values for $25(OH)D_{Total}$ in the control and study materials. The LC methods measure the vitamin D metabolites separately, and the majority of the LC participants reported values for $25(OH)D_3$ and $25(OH)D_2$ in addition to $25(OH)D_{Total}$; eight LC participants also reported results for 3-epi- $25(OH)D_3$.

Appendix B also provides the summarized NIST results for each of the serum materials. A detailed description of the NIST methods is provided in the next section of this report.

SUMMARY OF NIST METHODS USED TO EVALUATE THE CONTROL AND STUDY MATERIALS

NIST used isotope dilution LC-MS/MS (ID-LC-MS/MS) [1] or a combination of ID-LC-MS/MS and ID-LC-MS [2] procedures to determine the vitamin D metabolites in the control and study materials evaluated in this comparability study. The ID-LC-MS/MS approach is a reference measurement procedure (RMP) for 25(OH)D₃ and 25(OH)D₂ that is recognized by the Joint Committee for Traceability in Laboratory Medicine (JCTLM).

For SRM 972a L2 (Vial A), NIST determined $25(OH)D_3$ and $25(OH)D_2$ using both ID-LC-MS and the ID-LC-MS/MS RMP. The results for $25(OH)D_3$ and $25(OH)D_2$ are a combination of results from the two NIST methods as well as a third method from the Centers for Disease Control and Prevention (CDC) and are certified values. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [3]. For SRM 972a L2 (Vial A), the NIST result for $25(OH)D_{Total}$ is the sum of the certified values for $25(OH)D_3$ and $25(OH)D_2$, and the expanded uncertainty (U) incorporates the uncertainties for the two analytes.

The NIST values for 25(OH)D₃ in VitDQAP-III (Vial B) and SRM 968d L1 (Control) were obtained using the ID-LC-MS/MS RMP. The NIST value for 25(OH)D₂ was also obtained using the RMP for VitDQAP-III (Vial B), but for SRM 968d L1 the value was well below the limit of quantitation and was estimated to be 0.1 ng/mL based on one measurement. NIST measured values for 3-epi-25(OH)D₃ in VitDQAP-III (Vial B) and SRM 968d L1 (Control) using the ID-LC-MS/MS method. The values for 25(OH)D₃, 25(OH)D₂, and 3-epi-25(OH)D₃ are reported with expanded uncertainties that incorporate components for measurement variability and measurement uncertainty associated with the density of the materials and the purity of the reference standards. In addition, the measurements include an additional 1% type B uncertainty for unknown systematic errors, which is consistent with the practice used at NIST for clinical measurements [1].

The NIST values for $25(OH)D_{Total}$ in VitDQAP-III (Vial B) and SRM 968d L1 (Control) are the sum of the individual values for $25(OH)D_3$ and $25(OH)D_2$, and U incorporates measurement uncertainties for the two analytes.

¹ Tai, S. S.-C.; Bedner, M.; Phinney, K.W.; Anal. Chem. 2010 82, 1942-1948.

² Bedner, M.; Phinney, K.W.; J. Chromatogr. A 2012 1240, 132–139.

³ May, W.; Parris, R.; Beck II, C.; Fassett, J.; Greenberg, R.; Guenther, F.; Kramer, G.; Wise, S.; Gills, T.; Colbert, J.; Gettings, R.; MacDonald, B.; NIST Special Publication 260-136 **2000**; <u>http://www.nist.gov/srm/publications.cfm</u>

WINTER 2015 COMPARABILITY STUDY RESULTS AND DISCUSSION

Results for 25(OH)D_{Total}

A summary of the individual participant data for total 25-hydroxyvitamin D (25(OH)D_{Total}) in SRM 972a L2 (Vial A), VitDQAP-III (Vial B), and SRM 968d L1 (Control) is provided in **Table 1**.

The community results are summarized at the bottom of **Table 1** for all reported methods, the IA methods only, the LC methods only, and the LC-MSⁿ methods only. The community results include the total number of quantitative values reported (N), the median value for each analyte, the MADe (the median absolute deviation estimate, a robust estimate of the standard deviation), and the percent coefficient of variation (CV%).

Table 1 also presents the NIST results for 25(OH)D_{Total} in the control and the two study materials.

Lab Method Vial A Vial B Control 026 LC-MS/MS 18.9 33.6 12.7 030a RIA 19.8 38.4 13.1 056a LC-MS/MS 18.8 32.3 12.7 056b LC-MS/MS 18.9 32.5 12.8 060 LC-MS/MS 17.5 27.7 13.2 110 LC-WS/MS 11.6 35.0 13.5 119 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 18.5 36.6 13.1 187 LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.0 28.6 13.0 194 LC-MS/MS 21.0 28.6 13.0 194 LC-MS/MS 17.7 30.0 12.2 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS <			SRM 972a L2	VitDQAP-III	SRM 968d L1
026 LC-MS/MS 18.9 33.6 12.7 030a RIA 19.8 38.4 13.1 056b LC-MS/MS 18.8 32.3 12.7 056b LC-MS/MS 18.9 32.5 12.8 060 LC-MS/MS 17.5 27.7 13.2 110 LC-UV 16.2 21.9 12.4 116 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 17.0 33.0 11.0 161b LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 22.5 37.7 12.8 198c CLMS/MS 20.6	Lab	Method	Vial A	Vial B	Control
030a RIA 19.8 38.4 13.1 056a LC-MS/MS 18.8 32.3 12.7 056b LC-MS/MS 18.9 32.5 12.8 060 LC-MS/MS 17.5 27.7 13.2 110 LC-UV 16.2 21.9 12.4 116 LC-MS/MS 19.4 40.5 11.5 119 LC-MS/MS 19.4 40.5 11.1 161b LC-MS/MS 17.0 33.0 11.0 161b LC-MS/MS 21.5 35.2 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-WS/MS 17.7 30.0 12.2 197 LC-MS/MS 17.7 30.0 12.2 198 LC-MS/MS 20.6 35.3 13.6 199 LC-MS/MS 18.2 32.1 12.6 199 LC-MS/MS 18.	026	LC-MS/MS	18.9	33.6	12.7
056a LC-MS/MS 18.8 32.3 12.7 066b LC-MS/MS 17.5 27.7 13.2 010 LC-MS/MS 17.5 27.7 13.2 110 LC-WS/MS 11.6 35.0 13.5 119 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 17.0 33.0 11.0 161b LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 195 CLIA 18.5 29.9 15.2 197 LC-MS/MS 22.5 37.7 12.8 198a LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 20.6 <td>030a</td> <td>RIA</td> <td>19.8</td> <td>38.4</td> <td>13.1</td>	030a	RIA	19.8	38.4	13.1
056b LC-MS/MS 18.9 32.5 12.8 060 LC-MS/MS 17.5 27.7 13.2 110 LC-WS/MS 21.6 35.0 13.5 119 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 19.4 40.5 11.5 161b LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 199 LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.8 32.9 12.5 212 LC-MS/MS 18.4 </td <td>056a</td> <td>LC-MS/MS</td> <td>18.8</td> <td>32.3</td> <td>12.7</td>	056a	LC-MS/MS	18.8	32.3	12.7
060 LC-MS/MS 17.5 27.7 13.2 110 LC-UV 16.2 21.9 12.4 116 LC-MS/MS 21.6 35.0 13.5 119 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 17.0 33.0 11.0 161b LC-MS/MS 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.8 <td>056b</td> <td>LC-MS/MS</td> <td>18.9</td> <td>32.5</td> <td>12.8</td>	056b	LC-MS/MS	18.9	32.5	12.8
110 LC-UV 16.2 21.9 12.4 116 LC-MS/MS 21.6 35.0 13.5 119 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 17.0 33.0 11.0 161b LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 22.5 37.7 12.8 198c CLMS/MS 18.2 32.1 12.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.4 32.9 12.2 212 LC-MS/MS 19.3	060	LC-MS/MS	17.5	27.7	13.2
116 LC-MS/MS 21.6 35.0 13.5 119 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 17.0 33.0 11.0 161b LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.1 32.9 12.5 212 LC-MS/MS 18.4 32.9 12.2 214b CLIA 16.6	110	LC-UV	16.2	21.9	12.4
119 LC-MS/MS 19.4 40.5 11.5 150 LC-MS/MS 17.0 33.0 11.0 161b LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.1 32.9 12.2 209 LC-MS/MS 18.4 32.9 12.2 214 LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4	116	LC-MS/MS	21.6	35.0	13.5
150LC-MS/MS17.033.011.0161bLC-MS/MS18.536.613.1180RIA17.829.413.3187LC-MS/MS21.535.213.3188CLIA26.640.615.0189LC-UV20.638.010.6194LC-MS/MS21.028.613.0196CLIA18.529.915.2197LC-MS/MS17.730.012.2198aLC-MS/MS22.537.712.8198cCLIA17.128.65.7199LC-MS/MS20.635.313.6204bLC-MS/MS18.232.112.6209LC-MS/MS18.832.912.5212LC-MS/MS18.432.912.2214bCLIA16.628.421.2215LC-MS/MS19.432.912.2216LC-MS/MS19.432.912.2215LC-MS/MS19.533.712.6217LC-MS/MS19.837.012.6218aCLIA17.631.813.5228aLC-MS/MS17.734.512.5243bLC-MS/MS17.734.512.5244LC-MS/MS17.734.512.5243bLC-MS/MS17.735.012.1244LC-MS/MS17.734.512.5243bLC-MS/MS17.734.5	119	LC-MS/MS	19.4	40.5	11.5
161b LC-MS/MS 18.5 36.6 13.1 180 RIA 17.8 29.4 13.3 187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.8 37.0 12.6 217 LC-MS/MS 19.3	150	LC-MS/MS	17.0	33.0	11.0
180RIA17.829.413.3187LC-MS/MS21.535.213.3188CLIA26.640.615.0189LC-UV20.638.010.6194LC-MS/MS21.028.613.0196CLIA18.529.915.2197LC-MS/MS17.730.012.2198aLC-MS/MS22.537.712.8199cCLA17.128.65.7199LC-MS/MS20.635.313.6204bLC-MS/MS18.232.112.6209LC-MS/MS18.232.112.6209LC-MS/MS18.132.912.5212LC-MS/MS18.132.912.2214bCLIA16.628.421.2215LC-MS/MS19.432.912.2215LC-MS/MS19.837.012.6216LC-MS/MS19.837.012.6217LC-MS/MS19.330.614.8221cLC-MS/MS17.733.411.3225LC-MS/MS17.733.411.3244LC-MS/MS17.733.411.3243bCLIA20.030.411.9244LC-MS/MS17.733.411.3245LC-MS/MS17.733.411.3246LC-MS/MS17.733.411.3247CLIA20.030.6	161b	LC-MS/MS	18.5	36.6	13.1
187 LC-MS/MS 21.5 35.2 13.3 188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 27.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 199c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.8 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.5 33.7 12.6 217 LC-MS/MS 19.3 30.6 14.8 2216 LC-MS/MS 19.3	180	RIA	17.8	29.4	13.3
188 CLIA 26.6 40.6 15.0 189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.8 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.8 37.0 12.6 217 LC-MS/MS 19.8 37.0 12.6 218 CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 2215 LC-MS/MS 17.9 31.2	187	LC-MS/MS	21.5	35.2	13.3
189 LC-UV 20.6 38.0 10.6 194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.8 37.0 12.6 217 LC-MS/MS 19.3 30.6 14.8 2215 LC-MS 19.3 25.2 13.6 225 LC-MS/MS 17.9	188	CLIA	26.6	40.6	15.0
194 LC-MS/MS 21.0 28.6 13.0 196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.8 32.9 12.5 212 LC-MS/MS 18.1 32.9 12.2 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.8 37.0 12.6 217 LC-MS/MS 19.3 30.6 14.8 221c LC-MS/MS 19.3 30.6 14.8 221c LC-MS/MS 17	189	LC-UV	20.6	38.0	10.6
196 CLIA 18.5 29.9 15.2 197 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.8 32.9 12.3 214b CLIA 16.6 28.4 21.2 215 LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.8 37.0 12.6 217 LC-MS/MS 19.8 37.0 12.6 218 CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 17.7	194	LC-MS/MS	21.0	28.6	13.0
157 LC-MS/MS 17.7 30.0 12.2 198a LC-MS/MS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.2 32.1 12.5 212 LC-MS/MS 18.8 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.8 37.0 12.6 217 LC-MS/MS 19.3 30.6 14.8 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7	190		18.5	29.9	10.2
130al LU-INIS/INIS 22.5 37.7 12.8 198c CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 18.8 32.9 12.5 212 LC-MS/MS 18.1 32.9 12.2 214b CLIA 16.6 28.4 21.2 215 LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.	19/		17.7	30.0	12.2
1500 CLIA 17.1 28.6 5.7 199 LC-MS/MS 20.6 35.3 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.8 32.9 12.5 212 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 215 LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.4 32.9 12.2 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.7 33.4 11.3 241 LC-MS/MS 17.7<	1988		22.5	31.1	12.8 E 7
199 LC-MS/MS 18.2 32.1 13.6 204b LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.8 32.9 12.5 212 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 215 LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.8 37.0 12.6 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-MS/MS 17.0	1980		17.1	28.6	5.7
2040 LC-MS/MS 18.2 32.1 12.6 209 LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.8 32.9 12.5 212 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 215 LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.4 32.9 12.2 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-MS/MS 24.	199		20.0	30.3	13.0
209 LC-MS/MS 20.6 36.6 14.1 211 LC-MS/MS 18.8 32.9 12.5 212 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.4 32.9 12.2 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-MS/MS 24.3 37.8 12.2 244 LC-MS/MS 17.0 35.0 <td>2040</td> <td>LC-IVIS/IVIS</td> <td>18.2</td> <td>32.1</td> <td>12.0</td>	2040	LC-IVIS/IVIS	18.2	32.1	12.0
211 LC-MS/MS 18.3 32.9 12.3 212 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.4 32.9 12.2 216 LC-MS/MS 19.4 32.9 12.2 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS 19.3 25.2 13.6 225 LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-MS/MS 17.0 35.0 12.1 244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4	209	LC-IVIS/IVIS	20.0	30.0	14.1
212 LC-MS/MS 18.1 32.9 12.3 214b CLIA 16.6 28.4 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 20.4 37.2 13.2 216 LC-MS/MS 19.5 33.7 12.6 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS 19.3 25.2 13.6 225 LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-WS/MS 14.3 37.8 12.2 244 LC-MS/MS 19.7 31.4 12.1 249 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.9 25.5	211	LC-IVIS/IVIS	10.0	32.9	12.5
2140 CLA 21.2 214c LC-MS/MS 19.4 32.9 12.2 215 LC-MS/MS 20.4 37.2 13.2 216 LC-MS/MS 19.5 33.7 12.6 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 19.3 25.2 13.6 225 LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-UV 25.3 34.5 12.5 244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8	212 214b		16.1	28.4	12.3
214c LC-MS/MS 20.4 37.2 13.2 215 LC-MS/MS 19.5 33.7 12.6 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS 19.3 25.2 13.6 225 LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-WS/MS 17.7 33.4 11.3 244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 19.7 31.4 12.1 253 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 <td>2140</td> <td></td> <td>10.0</td> <td>32.9</td> <td>12.2</td>	2140		10.0	32.9	12.2
216 LC-MS/MS 19.5 33.7 12.6 217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS/MS 19.3 25.2 13.6 221b LC-UV 19.3 38.1 15.5 228a LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-UV 25.3 34.5 12.5 244 LC-MS/MS 24.3 37.8 12.2 244 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8<	2140	LC-MS/MS	20.4	37.2	13.2
217 LC-MS/MS 19.8 37.0 12.6 218a CLIA 17.6 31.8 13.5 221b LC-UV 19.3 30.6 14.8 221c LC-MS 19.3 25.2 13.6 225 LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-WS/MS 24.3 37.8 12.2 244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 266 CLIA 16.0 24.6 13.7 259 LC-MS/MS 18.4 <td>216</td> <td>LC-MS/MS</td> <td><u>195</u></td> <td>33.7</td> <td>12.6</td>	216	LC-MS/MS	<u>195</u>	33.7	12.6
218a CLIA 17.6 31.8 13.5 21b LC-UV 19.3 30.6 14.8 221b LC-UV 19.3 30.6 14.8 221c LC-MS 19.3 25.2 13.6 225 LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-UV 25.3 34.5 12.5 243b LC-MS/MS 24.3 37.8 12.2 244 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 19.7 31.4 12.1 2549 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 266 CLIA 16.0 24.6 13.7 258 CLA 16.0 24.6 13.7 259 LC-MS/MS 18.4 34.3 1	217	LC-MS/MS	19.8	37.0	12.6
221b LC-UV 19.3 30.6 14.8 221c LC-MS 19.3 25.2 13.6 225 LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-UV 25.3 34.5 12.5 243b LC-MS/MS 24.3 37.8 12.2 244 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 19.7 31.4 12.1 2549 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 266 CLIA 16.0 24.6 13.7 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.6 35.0 <t< td=""><td>218a</td><td>CLIA</td><td>17.6</td><td>31.8</td><td>13.5</td></t<>	218a	CLIA	17.6	31.8	13.5
221c LC-MS 19.3 25.2 13.6 225 LC-MS/MS 21.3 38.1 15.5 228a LC-MS/MS 17.9 31.2 12.4 231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-UV 25.3 34.5 12.5 243b LC-MS/MS 24.3 37.8 12.2 244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 266 CLIA 16.0 24.6 13.7 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.4	221b	LC-UV	19.3	30.6	14.8
225LC-MS/MS21.338.115.5228aLC-MS/MS17.931.212.4231bCLIA20.030.411.9241LC-MS/MS17.733.411.3243aLC-UV25.334.512.5243bLC-MS/MS24.337.812.2244LC-MS/MS17.035.012.1249LC-MS/MS19.731.412.1251LC-MS/MS20.335.412.8255LC-MS/MS20.335.412.8256CLIA16.024.613.7258CLIA16.024.613.7259LC-MS/MS18.434.312.7261CLIA17.323.014.4262CLIA18.635.012.6263CLIA17.832.112.6268aRIA30.424.813.328bEIA21.441.421.9	221c	LC-MS	19.3	25.2	13.6
228aLC-MS/MS17.931.212.4231bCLIA20.030.411.9241LC-MS/MS17.733.411.3243aLC-UV25.334.512.5243bLC-MS/MS24.337.812.2244LC-MS/MS17.035.012.1249LC-MS/MS19.731.412.1251LC-MS/MS20.335.412.8255LC-MS/MS20.335.412.8256CLIA16.024.613.7258CLIA20.925.517.9259LC-MS/MS18.434.312.7261CLIA17.323.014.4262CLIA18.635.012.6267CLEIA17.832.112.6268aRIA30.424.813.328bEIA21.124.813.3	225	LC-MS/MS	21.3	38.1	15.5
231b CLIA 20.0 30.4 11.9 241 LC-MS/MS 17.7 33.4 11.3 243a LC-UV 25.3 34.5 12.5 243b LC-MS/MS 24.3 37.8 12.2 244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 22.0 40.0 n/r 253 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 266 CLIA 16.0 24.6 13.7 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.4 31.3 20.9 263 CLIA 18.6 35.0 12.6 2667 CLEIA 17.8 <	228a	LC-MS/MS	17.9	31.2	12.4
241 LC-MS/MS 17.7 33.4 11.3 243a LC-UV 25.3 34.5 12.5 243b LC-MS/MS 24.3 37.8 12.2 244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 22.0 40.0 n/r 253 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 20.3 35.4 12.8 256 CLIA 16.0 24.6 13.7 258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.4 31.3 20.9 263 CLIA 18.6 35.0 12.6 2667 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24	231b	CLIA	20.0	30.4	11.9
243aLC-UV25.334.512.5243bLC-MS/MS24.337.812.2244LC-MS/MS17.035.012.1249LC-MS/MS19.731.412.1251LC-MS/MS22.040.0n/r253LC-MS/MS20.335.412.8255LC-MS/MS18.832.813.2256CLIA16.024.613.7259LC-MS/MS18.434.312.7261CLIA17.323.014.4262CLIA18.635.012.6263CLIA17.832.112.6268aRIA30.424.813.328bEIA21.141.421.9	241	LC-MS/MS	17.7	33.4	11.3
243bLC-MS/MS24.337.812.2244LC-MS/MS17.035.012.1249LC-MS/MS19.731.412.1251LC-MS/MS22.040.0n/r253LC-MS/MS20.335.412.8255LC-MS/MS18.832.813.2256CLIA16.024.613.7259LC-MS/MS18.434.312.7261CLIA17.323.014.4262CLIA18.635.012.6263CLIA17.832.112.6268aRIA30.424.813.328bEIA21.141.421.9	243a	LC-UV	25.3	34.5	12.5
244 LC-MS/MS 17.0 35.0 12.1 249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 22.0 40.0 n/r 253 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 256 CLIA 16.0 24.6 13.7 258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.6 35.0 12.6 263 CLIA 17.8 32.1 12.6 2663 CLIA 17.8 32.1 12.6 267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 28b EIA 21.4 41.4 21.9	243b	LC-MS/MS	24.3	37.8	12.2
249 LC-MS/MS 19.7 31.4 12.1 251 LC-MS/MS 22.0 40.0 n/r 253 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 256 CLIA 16.0 24.6 13.7 258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.6 35.0 12.6 263 CLIA 17.8 32.1 12.6 2663 RIA 30.4 24.8 13.3 28b FIA 21.4 41.4 21.9	244	LC-MS/MS	17.0	35.0	12.1
251 LC-MS/MS 22.0 40.0 n/r 253 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 256 CLIA 16.0 24.6 13.7 258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.6 35.0 12.6 263 CLIA 17.8 32.1 12.6 2663 RIA 30.4 24.8 13.3 288 RIA 30.4 24.8 13.3	249	LC-MS/MS	19.7	31.4	12.1
253 LC-MS/MS 20.3 35.4 12.8 255 LC-MS/MS 18.8 32.8 13.2 256 CLIA 16.0 24.6 13.7 258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.6 35.0 12.6 263 CLIA 17.8 32.1 12.6 2663 CLIA 17.8 32.1 12.6 2663 RIA 30.4 24.8 13.3 28b FIA 21.4 41.4 21.9	251	LC-MS/MS	22.0	40.0	n/r
255 LC-MS/MS 18.8 32.8 13.2 256 CLIA 16.0 24.6 13.7 258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.6 35.0 12.6 263 CLIA 17.8 32.1 12.6 2663 RIA 30.4 24.8 13.3 28b FIA 21.1 41.4 21.9	253	LC-MS/MS	20.3	35.4	12.8
256 CLIA 16.0 24.6 13.7 258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.4 31.3 20.9 263 CLIA 18.6 35.0 12.6 267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 28b EIA 21.1 41.4 21.9	255	LC-MS/MS	18.8	32.8	13.2
258 CLIA 20.9 25.5 17.9 259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.4 31.3 20.9 263 CLIA 18.6 35.0 12.6 267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 28b EIA 21.1 41.4 21.9	256	CLIA	16.0	24.6	13.7
259 LC-MS/MS 18.4 34.3 12.7 261 CLIA 17.3 23.0 14.4 262 CLIA 18.4 31.3 20.9 263 CLIA 18.6 35.0 12.6 267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 268b EIA 21.1 41.4 21.9	258	CLIA	20.9	25.5	17.9
261 CLIA 17.3 23.0 14.4 262 CLIA 18.4 31.3 20.9 263 CLIA 18.6 35.0 12.6 267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 268b EIA 21.1 41.4 21.9	259	LC-MS/MS	18.4	34.3	12.7
262 CLIA 18.4 31.3 20.9 263 CLIA 18.6 35.0 12.6 267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 268b EIA 21.1 41.4 21.9	261	CLIA	17.3	23.0	14.4
263 CLIA 18.6 35.0 12.6 267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 268b EIA 21.1 41.4 21.9	262	CLIA	18.4	31.3	20.9
267 CLEIA 17.8 32.1 12.6 268a RIA 30.4 24.8 13.3 268b EIA 21.1 41.4 21.9	263	CLIA	18.6	35.0	12.6
268a RIA 30.4 24.8 13.3 268b ELA 21.1 41.4 21.9	267	CLEIA	17.8	32.1	12.6
	268a	RIA FIA	30.4	24.8	13.3
	268b		21.1	41.4	21.8
209 LU-INIS/INIS 18.1 33.7 12.9	269		18.1	33.7	12.9
270 LC-INIS/INIS 18.5 26.6 9.3	270		18.5	26.6	9.3
271 LU-INIS/INIS 15.0 32.1 11.9	2/1		15.0	32.1	11.9
272 LU-IVIO/IVIO 19.4 35.4 12.7 273 EIA 47.7 24.9 44.0	212		19.4	30.4 21 0	12.7
277 CLIA 277 200 24.2	213		2/7	20.0	21.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	214		n/r = not repr	20.0 Inted or not de	

Table 1. Summary of participant data for 25(OH)D _{Total} (ng/mL) in SRM 972a L2 (Vial A),
VitDQ AP-III (Vial B), and SRM 968d L1 (Control).

		Vial A	Vial B	Control
s	N	58	58	57
= 2	Median	18.9	32.9	12.8
et≻	MADe	1.8	3.7	0.9
2	CV%	9.3	11	6.9
s	N	18	18	18
⊿ õ	Median	18.5	30.2	14.0
et –	MADe	2.0	2.7	1.9
3	CV%	10.8	9	13.7
s	N	40	40	39
ပဋိ	Median	19.3	33.7	12.7
et	MADe	1.8	2.6	0.7
2	CV%	9.3	7.7	5.8
5.0	N	36	36	35
MS	Median	19.1	33.7	12.7
ပ်	MADe	1.7	2.5	0.7
	CV%	8.7	7.5	5.8
NIST Value		<mark>18.9</mark>	32.7	<mark>12.5</mark>
	U	0.4	0.7	0.4

SRM 972a L2 VitDQAP-III SRM 968d L1

NIST/NIH Vitamin D Metabolites Quality Assurance Program Gaithersburg, MD 20899-8392

For all participant datasets, the single reported values for $25(OH)D_{Total}$ in SRM 972a L2 (Vial A), VitDQAP-III (Vial B), and SRM 968d L1 (Control) are plotted in **Figure 1**, **Figure 2**, and **Figure 3**, respectively. The results from immunoassay methods are displayed with open dark blue circles (\circ), and the results from the LC-based methods are displayed with open light blue circles (\circ). The results from the individual methods were sorted separately, as indicated by the x-axis labels.

From the single reported values for all datasets for a given technique (IA or LC), the consensus median and the consensus expanded uncertainty $(2 \times MADe)$ were determined. For both of the major techniques (IA or LC) in each figure, the solid lines (----) and (----) represent the consensus median, and the dashed lines (----) and (----) represent the consensus expanded uncertainty interval (median $\pm 2 \times MADe$). The laboratories with results that fall between the two dashed lines are within the consensus range for their technique (IA or LC).

The red lines (——) in each figure (**Figures 1 – 3**) represent the NIST value and its associated uncertainty (i.e., value $\pm U$). NIST has confidence that the "true" value for each material lies within this interval. When these lines are not within the consensus ranges for each technique (IA or LC), then there may be method bias.

Specific results for each of the three study materials are summarized below. Note that the assessment is based on the actual reported values, not the lines and symbols, which have been enlarged to show detail and the laboratory number.

SRM 972a L2 (Vial A): Figure 1

- For the IA results, three reported values are outside of the consensus range (two CLIA, one RIA).
- For the LC results, three reported values are outside of the consensus range (two LC-MSⁿ, one LC-UV).
- The consensus median values for both the IA and the LC results are comparable with the NIST expanded uncertainty range (red lines).

VitDQAP-III (Vial B): Figure 2

- For the IA results, five reported values are outside the consensus range (three CLIA, one EIA, and one RIA).
- For the LC results, six reported values are outside the consensus range (five LC-MSⁿ, one LC-UV).
- The consensus median value for the IA results is lower than the NIST expanded uncertainty range (red lines).
- The consensus median value for the LC results is slightly higher than the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus ranges for both IA and LC.

SRM 968d L1 (Control): Figure 3

- For the IA results, five reported values are outside of the consensus range (four CLIA, one EIA).
- For the LC results, five reported values are outside of the consensus range (three LC-MSⁿ, two LC-UV).
- The consensus median value for the IA results is higher than the NIST expanded uncertainty range (red lines).
- The consensus median value for the LC results is comparable to the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus range for both IA and LC.

Figure 1. Participant results for 25(OH)D_{Total} in SRM 972a L2 (Vial A) as determined by immunoassay (CLIA, EIA, RIA, and CLEIA) and LC (LC-MSⁿ and LC-UV) methods.

Figure 2. Participant results for 25(OH)D_{Total} in VitDQAP-III (Vial B) as determined by immunoassay (CLIA, EIA, RIA, and CLEIA) and LC (LC-MSⁿ and LC-UV) methods.

NIST/NIH Vitamin D Metabolites Quality Assurance Program Gaithersburg, MD 20899-8392

Figure 3. Participant results for 25(OH)D_{Total} in SRM 968d Level 1 (Control) as determined by immunoassay (CLIA, EIA, RIA, and CLEIA) and LC (LC-MSⁿ and LC-UV) methods.

Figure 4 presents direct graphical comparisons of the $25(OH)D_{Total}$ results for a) SRM 972a L2 (Vial A) and VitDQAP-III (Vial B), and b) VitDQAP-III (Vial B) and SRM 968d L1 (Control). In each plot, there are two blue consensus boxes, one for IA methods and one for LC methods (as indicated). Laboratory results that are within the consensus range for both study materials are within the blue consensus boxes. Conversely, laboratory results that fall outside of (or on the edge of) either of the consensus boxes are not included in the consensus ranges and are highlighted with their laboratory code numbers. In each plot, the NIST values for the materials are denoted with a red diamond symbol (\blacklozenge), and the Youden line (y=x) centered on the NIST value is illustrated by a red line (_____) across the magnitude of the y-axis and x-axis, respectively.

Specific results as assessed from the Youden comparison plots are summarized below.

SRM 972a L2 (Vial A) and VitDQAP-III (Vial B): Figure 4 a

- IA results that are not included in the consensus ranges include numbers 030a, 188, 261, 268a, 268b, and 274
- LC results that are not included in the consensus ranges include numbers 060, 110, 119, 221c, 243a, 243b, 251, 270, and 271
- The Youden line runs through the center of both the IA and LC consensus boxes, illustrating that both the IA and LC results are in agreement with each other and with the NIST results for these materials.

VitDQAP-III (Vial B) and SRM 968d L1 (Control): Figure 4 b

- IA results that are not included in the consensus ranges include numbers 030a, 188, 198c, 214b, 261, 262, 268b, and 274
- LC results that are not included in the consensus ranges include numbers 060, 110, 119, 150, 189, 221b, 221c, 225, and 270
- The Youden line runs through the center of the LC consensus box and through the bottom corner of the IA consensus box, illustrating that the LC results are in better agreement with the NIST results than are the IA results for these materials.

Figure 4. Youden comparison plot of the results for 25(OH)D_{Total} in a) 972a L2 (Vial A) and VitDQAP-III (Vial B) and b) VitDQAP-III (Vial B) and SRM 968d L1 (Control) for all methods.

Discussion of Results for 25(OH)D_{Total}

In the Winter 2015 comparability study, both SRM 972a L2 (Vial A) and SRM 968d L1 (Control) contain predominantly 25(OH)D₃. The CV%'s of 9.3% and 6.9% (all methods) for SRM 972a L2 (Vial) A and SRM 968d L1 (Control), respectively, are consistent with participant performance for other materials containing predominantly 25(OH)D₃ that were evaluated in previous comparability studies of the VitDQAP.

The VitDQAP-III material (Vial B) is different from SRM 972a L2 (Vial A) and SRM 968d L1 (Control) because it contains measurable 25(OH)D₂ in addition to 25(OH)D₃. The metabolite 25(OH)D₂ represents 20% of the 25(OH)D_{Total} concentration in VitDQAP-III (Vial A), based on the NIST values of 6.5 ng/mL \pm 0.2 ng/mL for 25(OH)D₂ and 32.7 ng/mL \pm 0.7 ng/mL for 25(OH)D_{Total}. When materials containing appreciable amounts of 25(OH)D₂ (> 13 ng/mL) were evaluated in previous comparability studies of the VitDQAP, the results were bimodal, with the IA methods underrepresenting the 25(OH)D_{Total} concentration. In addition, the CV% (all methods) for those materials was relatively large (approximately 17% to 28%). The results for VitDQAP-III (Vial B), do not reveal those same trends: the CV% (all methods) is relatively low (11%), and the IA method results overlap almost completely with the LC results. The difference in the observed results for the VitDQAP-III material (Vial B) is likely attributable to both the relatively high concentration of 25(OH)D_{Total} and the relatively low concentration of 25(OH)D₂, which causes any effect from the 25(OH)D₂ contribution to be lost in the overall variability of the results. However, the median IA result for VitDQAP-III (Vial B) is biased 7% and 10% lower than the NIST and the LC median results, respectively, which may be attributable to the nonequivalent response of many IA methods to $25(OH)D_2$.

The Winter 2015 exercise was the first to utilize study materials that were evaluated in previous comparability studies of the VitDQAP. VitDQAP-III (Vial B) was also evaluated in the Winter 2014 comparability study, and SRM 972a L2 (Vial A) was previously evaluated in Winter 2012. **Table 2** provides the comprehensive program results for each of these two study materials in the current study as well as the Winter 2014 and Winter 2012 studies. Using the results in **Table 2**, labs that participated in the prior studies can assess their performance for these materials over time. In addition, it is informative to compare the summary statistics at the bottom of **Table 2**, even though the participating laboratories are not the same in each study. For both materials, the median and CV% results are very consistent across both comparability studies in which the materials were evaluated.

		VitDQ Winter 2015	AP-III Winter 2014	SRM 9 Winter 2015	72a L2 Winter 2012
Lab	Method	Vial B	Vial A	Vial A	Vial B, D
017	CLIA	Х	31.0	х	18.5
026	LC-MS/MS	33.6	33.7	18.9	20.9
030a	RIA	38.4	40.5	19.8	X
056a	LC-MS/MS	32.3	34.5	18.8	19.5
056b	LC-MS/MS	32.5	34.0	18.9	X
060	LC-MS/MS	27.7	33.4	17.5	22.3
062	RIA	х	х	х	20.9
086a	CLIA	X	X	X	22.5
110		21.9	21.8	16.2	26.0
116	LC-MS/MS	35.0	34.2	21.6	18.3
119	LC-MS/MS	40.5	39.5	19.4	17.9
124	LC-MS/MS	х	х	х	19.5
139	LC-UV	х	24.7	х	22.4
150	LC-MS/MS	33.0	31.2 V	17.0	X 19.5
161a	CLIA	Ŷ	30.6	x	19.2
161b	LC-MS/MS	36.6	X	18.5	x
180	RIA	29.4	29.1	17.8	16.9
184	LC-MS/MS	X	Х	X	18.8
185a	LC-MS/MS	×	38.4	x	26.1
186		Ŷ	16.4 X	×	20.9
187	LC-MS/MS	35.2	30.3	21.5	X
188	CLIA	40.6	36.1	26.6	20.5
189	LC-UV	38.0	27.6	20.6	27.4
191	RIA	X	X	X	18.8
193		28.6	33.9	X 21.0	X 10.1
195	LC-MS/MS	X	X	X	18.5
196	CLIA	29.9	30.7	18.5	19.0
197	LC-MS/MS	30.0	34.2	17.7	19.0
198a	LC-MS/MS	37.7	30.8	22.5	20.6
198D 198c	CLIA	28.6	29.1	17.1	20.3 X
199	LC-MS/MS	35.3	38.2	20.6	19.5
200	RIA	x	27.7	x	18.9
201	EIA	×	х	х	22.3
202	LC-MS/MS	×	X 27.5	×	21.3
204a 204h	LC-MS/MS	32.1	27.5 33.8	X 18.2	×
209	LC-MS/MS	36.6	33.9	20.6	19.2
210a	RIA	х	31.4	х	20.8
210b	CLIA	х	38.7	х	19.6
211	LC-MS/MS	32.9	36.0	18.8	18.7
212	LC-MS/MS CLIA	32.9 ¥	35.7	18.1 ¥	21.9 Y
213b	EIA	Â	26.3	x	x
214a	RIA	х	27.5	х	х
214b	CLIA	28.4	31.2	16.6	X
214c	LC-MS/MS	32.9	31.7	19.4	X
215		37.2	37.2	20.4	20.2
217	LC-MS/MS	37.0	X	19.8	19.4
218a	CLIA	31.8	33.7	17.6	17.5
218b	LC-MS/MS	X	31.8	X	26.1
219	LC-MS/MS	X	X	X	19.7
220	LC-INS/MS	×	36.0	X	21.5 18.7
221b	LC-UV	30.6	37.5	19.3	18.3
221c	LC-MS	25.2	Х	19.3	x
222	CLIA	×	35.2	X	х
223	LC-MS/MS	X	X	X	18.5
220	LC-MS/MS	38.1	31.0	21.3	23.U 25.9
231a	LC-UV	×	30.2	x	20.9
231b	CLIA	30.4	Х	20.0	х
234	LC-MS/MS	X	X	x	18.5
236		33.4	× 28.7	X 177	17.7 10.4
242	LC-MS/MS	X	31.1	X	20.6
243a	LC-UV	34.5	27.8	25.3	21.4
243b	LC-MS/MS	37.8	28.2	24.3	х
244	LC-MS/MS	35.0	33.0	17.0	18.0
240 247a	CLIA	x	31.9	×	30.∠ X
247b	EIA	Â	31.0	x	x
249	LC-MS/MS	31.4	33.3	19.7	x
251	LC-MS/MS	40.0	34.4	22.0	X
253	LC-MS/MS	35.4	35.5	20.3	X
255	CLIA	32.0 24.6	32.9	16.0	Ŷ
257	CLIA	X	31.9	x	x
258	CLIA	25.5	32.8	20.9	х
259	LC-MS/MS	34.3	26.1	18.4	X
260		X 22.0	32.0	X 17.2	X
262	CLIA	23.0	34.1	18.4	Â
263	CLIA	35.0	28.7	18.6	x
264	LC-MS/MS	×	41.4	х	х
265	LC-MS/MS	X	39.0	X	х
267	CLEIA	32.1	X	17.8	×
268b	EIA	24.8 41.4	x	21.1	x
269	LC-MS/MS	33.7	x	18.1	x
270	LC-MS/MS	26.6	х	18.5	х
271	LC-MS/MS	32.1	X	15.0	X
272	LC-MS/MS	35.4	X	19.4	X
213	CLIA	29.9	x	24.7	×
X = did ro	t participato in t	hat study	~	27.7	~

NIST/NIH Vitamin D Metabolites Quality Assurance Program Gaithersburg, MD 20899-8392

5	A) as w	ell a	s for SI	RM 972	2a L2 1r	i the cur	rer
3 9 5 0 9 3 9 5	(Vial A D).) and	d a prio	r study	(Winte	r 2012 -	- V
4 5 2							
9				VitDQ Winter 2015	AP-III	SRM 9	72a L2
8				Winter 2015	Winter 2014	Viol A	Win Mi
1 9 5 4 8 1		C IA All ods methods methods	N Median MADe CV% N Median MADe CV% N Median	58 32.9 3.7 11 18 30.2 2.7 9 40 33.7	71 32.3 3.1 9.5 28 31.1 3.0 9.5 43 33.4	18.9 1.8 9.3 18 18.5 2.0 11 40 19.3	
0 6 3 5 9		LC-MS ⁿ L	MADe CV% N Median MADe CV%	2.6 7.7 36 33.7 2.5 7.5	3.6 11 37 33.8 3.1 9.0	1.8 <u>9.3</u> 36 19.1 1.7 8.7	
3 3			NIST Value U	<mark>32.7</mark> 0.7	<mark>32.7</mark> 0.7	<mark>18.9</mark> 0.4	
2 8 6 7 9							

Table 2. Summary of participant data for $25(OH)D_{Total}$ (ng/mL) in VitDQAP-III in the current study (Vial B) and a prior study (Winter 2014 – Vial A) as well as for SRM 972a L2 in the current study (Vial A) and a prior study (Winter 2012 – Vial B and D).

19.5 1.8 9.3 17.0 19.6 1.9

1.9 9.8 40.0 19.5 1.7 8.8

33.0 19.5 1.5 7.6

<mark>18.9</mark> 0.4

LC method results for 25(OH)D₃, 25(OH)D₂, and 3-epi-25(OH)D₃ in VitDQAP-III (Vial B)

Of the two major techniques IA and LC, only the LC methods can independently measure the 25(OH)D₂ and 25(OH)D₃ components of 25(OH)D_{Total}, and therefore LC methods require accurate, unbiased measurements of both 25(OH)D₂ and 25(OH)D₃ to obtain the correct values for 25(OH)D_{Total}. In the Winter 2015 comparability study of the VitDQAP, only the VitDQAP-III (Vial B) study material contained a significant concentration of the 25(OH)D₂ metabolite.

Of the 40 LC participants in the Winter 2014 comparability study, all reported values for $25(OH)D_3$ and all but two reported values for $25(OH)D_2$ in VitDQAP-III (Vial B). Since VitDQAP-III (Vial B) contains appreciable amounts of $25(OH)D_3$ (NIST value 26.2 ng/mL ± 0.6 ng/mL), the 3-epi-25(OH)D₃ metabolite is also measureable in this material. Eight LC participants reported values for the 3-epi-25(OH)D₃ metabolite. The study results and the NIST values for $25(OH)D_3$, $25(OH)D_2$, and 3-epi-25(OH)D₃ are presented in **Table 3**.

The single reported values for $25(OH)D_3$ and $25(OH)D_2$ in VitDQAP-III (Vial B) are plotted in **Figure 5 a** and **b**, respectively. The results from LC-MSⁿ and LC-UV were sorted separately, as indicated by the x-axis labels. From the single reported values for all LC datasets, the consensus median and the consensus expanded uncertainty range (median $\pm 2 \times MADe$) were determined. The solid lines (_____) represent the consensus median, and the dashed lines (_____) represent the expanded uncertainty range.

The red lines (——) in **Figures 5** represent the NIST value and its associated uncertainty (i.e., value $\pm U$). NIST has confidence that the "true" value for each metabolite lies within this interval. When these lines are not within the consensus range, then there may be method bias.

Specific results for 25(OH)D₃ and 25(OH)D₂ in VitDQAP-III (Vial B) are summarized below:

25(OH)D₃ in VitDQAP-III (Vial B): Figure 5 a

- Seven reported values are outside of the consensus variability range (five LC-MSⁿ, two LC-UV).
- The consensus median value is slightly higher than the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus variability range.

25(OH)D₂ in VitDQAP-III (Vial B): Figure 5 b

- Four reported values are outside of the consensus variability range, all from LC-MSⁿ.
- The consensus median value is in good agreement with the NIST expanded uncertainty range (red lines).

		25(OH)D ₃	25(OH)D ₂	3-epi-25(OH)D ₃
Lab	Method	Vial B	Vial B	Vial B
026	LC-MS/MS	26.9	6.8	2.2
056a	LC-MS/MS	25.6	6.7	1.5
056b	LC-MS/MS	25.9	6.5	n/r
060	LC-MS/MS	21.9	5.8	1.7
110	LC-UV	17.4	6.8	n/r
116	LC-MS/MS	28.7	6.3	<4.0
119	LC-MS/MS	25.1	15.4	n/r
150	LC-MS/MS	27.0	6.0	n/r
161b	LC-MS/MS	28.8	7.8	n/r
187	LC-MS/MS	29.3	5.9	n/r
189	LC-UV	31.1	6.9	n/r
194	LC-MS/MS	28.6	<7.0	n/r
197	LC-MS/MS	24.3	5.7	n/r
198a	LC-MS/MS	29.0	8.7	n/r
199	LC-MS/MS	29.4	5.9	n/r
204b	LC-MS/MS	25.5	6.6	n/d
209	LC-MS/MS	29.7	6.9	n/r
211	LC-MS/MS	26.3	6.7	n/r
212	LC-MS/MS	28.0	8.1	n/r
214c	LC-MS/MS	27.2	5.7	n/r
215	LC-MS/MS	28.4	8.8	n/r
216	LC-MS/MS	26.6	7.1	1.7
217	LC-MS/MS	28.0	9.0	n/r
221b	LC-UV	25.4	5.2	n/r
221c	LC-MS	25.2	0.0	n/r
225	LC-MS/MS	32.4	5.7	n/r
228a	LC-MS/MS	24.6	6.6	2.3
241	LC-MS/MS	27.9	5.5	1.1
243a	LC-UV	34.5	n/d	n/d
243b	LC-MS/MS	33.9	3.9	n/d
244	LC-MS/MS	27.0	8.0	n/r
249	LC-MS/MS	25.0	6.4	1.3
251	LC-MS/MS	33.0	7.0	n/r
253	LC-MS/MS	27.7	7.7	n/r
255	LC-MS/MS	26.5	6.3	n/r
259	LC-MS/MS	27.8	6.5	n/r
269	LC-MS/MS	23.9	9.8	n/r
270	LC-MS/MS	21.1	5.5	n/r
271	LC-MS/MS	23.8	8.3	n/r
272	LC-MS/MS	27.6	7.8	1.3
	N	40	38	8
, po	Median	27.1	6.7	1.6
Median MADe		2.5	1.3	0.4
ű	CV%	9.3	20	28
_	N	36	35	8
١S	Median	27.1	6.6	1.6
- N	MADe	2.3	1.3	0.4
Ľ	CV%	8.6	20	28
	2.70			
r			C E	4.0

Table 3. Summary of LC participant data and community results for $25(OH)D_3$, $25(OH)D_2$, and 3-epi-25(OH)D₃ (ng/mL) in VitDQAP-III (Vial B).

n/r = not reported or not determined; n/d = not detected < x = less than a reported quantitation limit of x

0.6

U

0.1

0.2

Figure 5. Participant LC results for a) 25(OH)D₃ and b) 25(OH)D₂ in VitDQAP-III (Vial B).

16

Dihydroxyvitamin D₃ Metabolites

This is the first comparability study in which a participant (Lab 269) reported results for two dihydroxyvitamin D₃ metabolites, 24, 25-dihydroxyvitamin D₃ (24,25(OH)₂D₃) and 1 α , 25-dihydroxyvitamin D₃ (1 α ,25(OH)₂D₃), in each of the study materials. The results provided by participant 269 for these metabolites include:

	24,25(OH) ₂ D ₃	1α,25(OH)2D3
	(ng/mL)	(ng/mL)
SRM 972a L2 (Vial A)	1.40 ± 0.07	0.0405 ± 0.0095
VitDQAP-III (Vial B)	2.50 ± 0.16	0.0442 ± 0.0084
SRM 968d L1 (Control)	0.687 ± 0.032	0.0628 ± 0.0068

Other participants who are interested in providing results for these metabolites in future studies are encouraged to do so. NIST has developed a candidate RMP for the determination of $24R,25(OH)_2D_3$ and is in the process of certifying values for this metabolite in SRM 972a. NIST has not developed a method for the $1\alpha,25(OH)_2D_3$ metabolite.

Conclusions from the Winter 2015 Comparability Study of the VitDQAP

The Winter 2015 comparability study is the tenth exercise and marks the five-year point for the VitDQAP. Over these five years and ten studies, the participant performance has been consistent for study materials that contain predominantly 25(OH)D₃; the CV was in the range from 7% to 19%, and the median values were biased slightly high relative to the NIST values. In the Winter 2015 comparability study, both SRM 972a L2 (Vial A) and SRM 968d L1 (Control) also contain predominantly 25(OH)D₃. The median participant results (all methods) for these materials agree well with the NIST values but otherwise follow these longstanding trends. In addition, Winter 2015 represents the second study in which SRM 972a L2 (Vial A) was evaluated in the VitDQAP. **Table 2** contains the program results for this material in both studies and demonstrates the consistency of the participant results for SRM 972a L2.

When VitDQAP-III (Vial B) was evaluated in the Winter 2014 study, it was the first study material that had an 'intermediate' concentration of $25(OH)D_2$ (NIST value 6.5 ng/mL \pm 0.2 ng/mL) in addition to a significant concentration of $25(OH)D_3$ (NIST value 26.3 ng/mL \pm 0.7 ng/mL). The material was first selected for study because it was anticipated that the IA methods would underrepresent the $25(OH)D_{Total}$ concentration due to nonequivalent response to the $25(OH)D_2$ metabolite. To the contrary, in both the Winter 2014 and the current Winter 2015 studies the IA results overlapped almost completely with the LC results, and any effect from the $25(OH)D_2$ metabolite was lost in the overall variability of the results for the VitDQAP-III study material (Vial B). As when previously evaluated, the median IA result for VitDQAP-III (Vial B) was biased lower than the median LC and NIST results, which is the only indication of potential non-equivalent response to the $25(OH)D_2$ metabolite. The consistency of the participant results for VitDQAP-III (Vial B) are also evident from the results provided in **Table 2**.

Laboratory Number	IA Method	Sample Preparation	Vendor/kit*
30a	RIA	Samples were extracted with acetonitrile	A
180	RIA	Samples were extracted with acetonitrile	А
188	CLIA	n/r	В
196	CLIA	No sample preparation required	С
198c	CLIA	n/r	n/r
214b	CLIA	n/r	С
218a	CLIA	Direct analysis	С
231b	CLIA	n/r	В
256	CLIA	n/r	С
258	CLIA	n/r	D
261	CLIA	No sample preparation required	D
262	CLIA	n/r	Е
263	EIA	On board displacement	F
267	CLEIA	n/r	G
268a	RIA	n/r	н
268b	EIA	n/r	I
273	EIA	n/r	n/r
274	CLIA	n/r	D

Appendix A-1. Summary of immunoassay methods used by participants.

n/r = not reported

*NIST cannot endorse or recommend commercial products, therefore individual vendors/kits are indicated with a unique letter but not identified

Laboratory Number	Internal Standard (IS)	Sample Preparation	Chromatographic Conditions	Detection: MRM ions
26	25(OH)D ₂ -d ₆ and 25(OH)D ₃ -d ₆	Liquid-liquid extraction method	PFP column (100 x 3.2 mm); isocratic elution with 82% methanol/18% water; flow 0.4 mL/min	25(OH)D ₃ 401/365; 25(OH)D ₂ 413/355; 3-epi-25(OH)D ₃ 401/365
56a	25(OH)D ₂ -d _{3;} 25(OH)D ₃ -d _{6;} 3-epi-25(OH)D ₃ -d ₃	Samples were extracted with hexane, evaporated, then reconstituted with 69% methanol	PFP column (100 × 2.1 mm; 1.9 μm); isocratic elution; flow 0.4 mL/min	25(OH)D ₃ 383/365; 25(OH)D ₃ -d ₆ 389/371; 25(OH)D ₂ 395/377; 25(OH)D ₂ -d ₃ 398/380; 3-epi-25(OH)D ₃ 383/365; 3-epi-25(OH)D ₃ -d ₃ 386/368
56b	n/r	n/r	n/r	n/r
60	25(OH)D ₃ -d ₆	IS was added, and then samples were extracted with acetonitrile, evaporated, and reconstituted with 90% methanol/10% water	PFP column (100 \times 3.0 mm; 2.6 μ m); gradient with water, methanol and acetonitrile (0.05% formic acid)	25(OH)D ₃ 383/211; 25(OH)D ₃ - <i>d</i> ₆ 389/211; 25(OH)D ₂ 413/355; 3-epi-25(OH)D ₃ 401/383
116	25(OH)D ₃ -d ₆	Serum proteins were precipitated with methanol	Online SPE; reversed-phase column; isocratic elution with 95% methanol/5% water; flow 0.6 mL/min	25(OH)D ₃ 383/211; 25(OH)D ₃ - <i>d</i> ₆ 389/211; 25(OH)D ₂ 395/269
119	25(OH)D ₃ -d ₆	Samples were mixed with ethanol containing the IS, equilibrated, mixed, extracted with hexane, evaporated, and reconstituted in methanol	C18 column (150 × 3.0 mm; 2.7 μm); Gradient with water and methanol (0.1% formic acid)	Exact mass system 25(OH)D ₃ 383.32932/365.31897; 25(OH)D ₃ - <i>d</i> ₆ 389.36658; 25(OH)D ₂ 395.32946/377.31894
150	25(OH)D ₂ -d ₆ and 25(OH)D ₃ -d ₃	Sample (200 µL) was mixed with IS solution, liquid-liquid extracted, centrifuged, supernatant evaporated, and reconstituted in mobile phase	PFP column (100 x 3.0 mm; 2.6 μm); isocratic separation with 74% methanol/26% water (2 mmol/L ammonium acetate, 0.1% formic acid); flow 0.5 mL/min	25(OH)D ₃ 401/383, 401/365; 25(OH)D ₂ 413/395, 413/365
161b	25(OH)D ₃ -d ₆	Protein precipitation	Reversed-phase column (50 \times 2.1 mm; 2.6 μ m); gradient with methanol and water (0.1% formic acid); flow 0.5 mL/min	25(OH)D ₃ 383/211; 25(OH)D ₂ 395/269
187	deuterated standards for 25(OH)D ₂ and 25(OH)D ₃	SPE	C18 column (50 × 2.1 mm; 3 μm); gradient with methanol and water	25(OH)D ₂ 413/395; 25(OH)D ₃ 401/383
194	25(OH)D ₃ -d ₆	Proteins precipitated with acetonitrile, top layer removed, evaporated, and reconstituted with methanol	C8 column (50 x 2mm); isocratic elution with 70% acetonitrile/ 30% water; flow 0.7 mL/min	25(OH)D ₂ 395/119; 25(OH)D ₃ 383/211
197	25(OH)D ₃ -d ₆	Precipitating agent added (200 μ L with 20 ng IS) to each serum sample (200 μ L), calibrator and control sample followed by mixing, centrifugation, and analysis	C18 column (50 x 4.6 mm; 5 µm); column temperature 45°C; gradient with water and methanol; flow 1.0 mL/min	n/r
198a	25(OH)D ₃ -d ₆	Proteins precipitated with methanol, followed by $ZnSO_4$ addition, hexane extraction, centrifugation, evaporation under N ₂ , and reconstitution in methanol (0.1% formic acid)	C18 column (50 x 2.1 mm; 3.5 μm); isocratic elution with 85% methanol (0.1% formic acid); flow 0.5 mL/min	25(OH)D ₃ 401/383, 401/365; 25(OH)D ₂ 413/395, 413/355; 25(OH)D ₃ - <i>d</i> ₆ 407/389, 407/371

Appendix A-2. Summary of LC-MSⁿ methods reported by participants.

199	proprietary	proprietary	proprietary	proprietary
204b	25(OH)D ₂ -d _{3;} 25(OH)D ₃ -d _{6;} 3-epi-25(OH)D ₃ -d ₃	Protein crash with 73% methanol followed by liquid-liquid extraction with hexane, centrifugation, evaporation, and reconstitution in mobile phase	PFP column (100 × 2.1 mm; 1.9 μm); column temperature 30°C; isocratic elution with 73% methanol/27% water; flow 0.4 mL/min	APCI 25(OH)D ₃ 383/365, 383/257; 25(OH)D ₂ 395/377, 395/209; 3-epi-25(OH)D ₃ 383/365, 383/257
209	25(OH)D ₃ -d ₆	Proteins were precipitated with 5% ZnSO ₄ in methanol	C8 column (50 × 2 mm; 5 μm); gradient with water/methanol; flow 0.7 mL/min	APCI 25(OH)D ₃ 383/229,383/211; 25(OH)D ₃ -d ₆ 389/211; 25(OH)D ₂ 395/269, 395/119
211	25(OH)D ₃ -d ₆	Proteins precipitated with acetonitrile containing IS followed by centrifugation	Turbulent flow column (32 x 4.6 mm; 3 μm)	25(OH)D ₃ 383/365 (quant), 383/257 (qual); 25(OH)D ₂ 395/209 (quant), 395/377 (qual)
212	25(OH)D ₃ -d ₆	Serum (100 µL) proteins precipitated using 5% methanol/95% acetonitrile containing the IS (350 µL)	C8 column (50 x 2 mm; 3 µm); gradient of 60% to 98% acetonitrile (0.1% formic acid)	25(OH)D ₃ 383/229, 383/211; 25(OH)D ₂ 395/269, 395/119
214c	25(OH)D ₃ -d ₆	Samples were extracted with hexane, centrifuged, evaporated, and filtered	Column (50 × 2.1 mm); isocratic elution with 85% methanol/ 15% water/ 0.1% formic acid; flow 0.3 mL/min	25(OH)D ₃ 401/383; 25(OH)D ₃ -d ₆ 407/389; 25(OH)D ₂ 413/395
215	25(OH)D ₃ -d ₆	Protein precipitation with methanol/isopropanol and ZnSO₄; supernatant extracted using SPE	C18 column (50 × 2.1mm; 2.6 μ m) column; gradient with water (0.1% formic acid, 5 mmol/L ammonium formate) and methanol (0.05% formic acid)	ESI 25(OH)D ₃ 401/383; 25(OH)D ₂ 413/395; 25(OH)D ₃ -d ₆ 407/389
216	Derivatized deuterated standard	Samples extracted using liquid- liquid extraction then labeled with a derivatization reagent	Revered-phase column (150 x 2.1 mm); gradient from 25% water (0.05% formic acid) to 50% acetonitrile (0.05% formic acid); flow 0.2 mL/min	n/r
217	25(OH)D ₃ -d ₆	Protein precipitation with ZnSO₄ in methanol followed by SPE	C8 column (50 x 2.1 mm; 1.7 μm); gradient of 70% to 98% methanol (with 0.1% formic acid); flow 0.4 mL/min	25(OH)D ₃ 401/159 (quant), 401/383 (qual); 25(OH)D ₂ 413/83 (quant), 413/395 (qual)
221c	25(OH)D ₂ -d ₆ and 25(OH)D ₃ -d ₃	Protein crash with acetonitrile containing IS; SPE extraction; elution with methanol/acetonitrile solution; evaporation; reconstitution with acetonitrile	PFP column (50 x 3.0 mm; 2.7 μm); elution with methanol/water/formic acid; column 40 °C	LC-MS SIM $25(OH)D_3 383;$ $25(OH)D_2 395;$ $25(OH)D_3 - d_6 389;$ $25(OH)D_2 - d_6 401$
225	25(OH)D ₃ -d ₆	Liquid-liquid extraction	PFP column (100 × 2.1 mm); gradient with methanol/water	25(OH)D ₃ 401/107; 25(OH)D ₂ 413/83
228a	n/r	n/r	n/r	n/r
241	25(OH)D ₃ -d ₆	Acetonitrile containing the IS (100 μ L) added to sample (200 μ L) to precipitate proteins, followed hexane extraction, centrifugation, evaporation, and reconstitution with 50% methanol	PFP column (100 x 2.1 mm; 2.6 μ m); gradient starting with 50% methanol (0.1% formic acid), 50% water (0.1% formic acid)	25(OH)D ₃ 383/211 (quant), 383/229 (qual); 25(OH)D ₂ 395/119 (quant), 395/211 (qual); 25(OH)D ₃ -d ₆ 389/211
243b	25(OH)D ₃ -d ₆	Samples (400 µL) were mixed with solution containing the IS (400 µL) and the mobile phase (500 µL); samples were centrifuged; supernatant was diluted; portion (50 µL) was injected	PFP column (150 × 2 mm); isocratic separation with 85% methanol/15% water; flow 0.3 mL/m	25(OH)D ₃ 383/257; 25(OH)D ₂ 395/269; 25(OH)D ₃ -d ₆ 389/263;

_					
	244	25(OH)D ₃ -d ₆	Protein precipitation followed by filtration	CN column; mobile phase consisting of distilled water (formic acid) and methanol	25(OH)D ₃ 383/211; 25(OH)D ₃ -d ₆ 389/211; 25(OH)D ₂ 395/269
	249	25(OH)D ₂ -d _{3;} 25(OH)D ₃ -d _{6;} 3-epi-25(OH)D ₃ -d ₃	Serum was deproteinated with NaOH and 90% acetonitrile/ 10% methanol followed by SPE	PFP column (100 x 2.1 mm; 1.8 μ m); gradient separation with water (2 mmol/L ammonium acetate) and methanol; flow 0.35 mL/min	25(OH)D ₃ 401/159; 25(OH)D ₂ 413/159
	251	25(OH)D ₂ - <i>d</i> ₃ and 25(OH)D ₃ - <i>d</i> ₃	Protein precipitation followed by SPE	Phenyl column (50 x 2.1 mm; 1.7 µm); gradient with water and methanol (0.1% formic acid, 2 mmol/L ammonium acetate); flow 0.45 mL/min	25(OH)D ₃ 401/159 (quant), 401/365 (qual); 25(OH)D ₂ 413/83 (quant), 413/355 (qual); 25(OH)D ₃ -d ₃ 404/162; 25(OH)D ₂ -d ₃ 416/358
	253	$25(OH)D_2-d_3$ and $25(OH)D_3-d_3$	The sample was extracted, centrifuged, and derivatized	C18 column (150 x 2.1 mm); gradient separation with water and methanol; flow 0.4 mL/min	25(OH)D ₂ 588; 25(OH)D ₃ 576
	255	deuterium labeled compound	Samples were extracted and derivatized with 4-phenyl-1,2,4- triazoline-3,5-dione	Reversed-phase column (50 x 2.1 mm); gradient with methanol; flow 0.5 mL/min	25(OH)D ₃ 607/298; 25(OH)D ₂ 619/298
	259	25(OH)D ₃ -d ₆	Liquid-liquid extraction using hexane	C8 column; gradient with methanol/water/0.1% formate; column temperature 40°C	25(OH)D ₃ 401/355; 25(OH)D ₂ 413/355; 25(OH)D ₃ -d ₆ 407/371
	269	25(OH)D ₃ -d ₆	Samples were spiked with IS(s), deprotonated with acetonitrile, filtered, dried, derivatized with 4- phenyl-1,2,4-triazoline-3,5-dione overnight at 4°C, dried, reconstituted with cyclohexyldodecylurea, and filtered	C18 column (100 x 2.1 mm; 1.7 μ M); gradient separation with 0.1% formic acid and water (10%)/acetonitrile (90%); flow 0.25 mL/min	24,25(OH) ₂ D ₃ - d_6 580/298 24,25(OH) ₂ D ₃ 574/298 1a,25(OH) ₂ D ₃ - d_6 580/314 1a,25(OH) ₂ D ₃ 574/314 25(OH)D3- d_6 564/298 25(OH)D ₃ 558/298 25(OH)D ₂ 570/ 298
	270	25(OH)D ₃ -d ₆	Samples were precipitated, centrifuged, evaporated, reconstituted, centrifuged, and upper layer injected	C18 column (300 x 4.6 mm; 3.5 μM); isocratic separation with 50% water/ 50% methanol; flow 1.0 mL/min	25(OH)D ₃ 401/383; 25(OH)D ₂ 413/395; 25(OH)D ₃ -d ₆ 407/389
	271	25(OH)D ₃ -d ₆	Protein precipitation	C8 column (3 μm); gradient with water/acetonitrile/0.1% formic acid; flow 0.7 mL/min	25(OH)D ₃ 383/229; 25(OH)D ₂ 395/269
	272	Isotopically labeled internal standards	Samples were precipitated and centrifuged before injection	Analytical column and trap column from a kit; separation using a binary gradient system and an additional isocratic pump	$\begin{array}{l} 25(OH)D_3\ 383/365,\ 383/299;\\ IS\ (1):\ 386/257,\ 386/232;\\ 25(OH)D_2\ 395/269,\ 395/251;\\ 3\text{-epi-25}(OH)D_3\ 383/257,\\ 383/299;\\ 3\text{-epi-25}(OH)D_2\ 395/269,\\ 395/251;\\ IS\ (2):\ 386/257,\ 386/232 \end{array}$

MRM = multiple reaction monitoring; PFP = pentafluorophenyl; SPE = solid phase extraction; n/r = not reported; CN = cyano; quant/qual = quantitative/qualitative ions SIM = selected ion monitoring; APCI = atmospheric pressure chemical ionization; ESI = electrospray ionization

Laboratory Number	Internal Standard (IS)	Sample Preparation	Chromatographic Conditions	Wavelength
110	n/a	Samples (500 µL) were mixed with ethanol (500 µL), extracted twice with hexane/methylene chloride (5:1), evaporated, and reconstituted	C18 column (2.1 \times 100 mm; 1.8 μ m); gradient with acetonitrile/methanol (85:15) and isopropanol (100%)	267 nm
189	unidentified	Protein precipitation followed by SPE	Reversed-phase column (150 × 4.6 mm); isocratic separation; flow 0.7 mL/min	265 nm
221b	laurophenone	Protein crash with acetonitrile solution containing IS, followed by SPE, elution with methanol/acetonitrile solution, evaporation, and reconstitution with acetonitrile	CN column (150 \times 5 mm; 3.5 μ m); elution with methanol/water/formic acid; column temperature 47°C	275 nm
243a	dodecanophenone	Samples (400 µL) were mixed with solution containing the IS (400 µL), precipitation reagent was added (500 µL), and portion of upper layer (50 µL) was injected	C18 column (100 × 3 mm); isocratic elution with water and isobutanol; flow 1.2 mL/min; column temperature 25°C	264 nm

Appendix A-3.	Summary of LC-UV	methods used b	y participants.
---------------	------------------	----------------	-----------------

n/a = not applicable; SPE = solid phase extraction

Appendix B. Raw		25(OH)D ₂ (ng/mL)		25(OH)D ₃ (ng/mL)			25(OH)D _{Total} (ng/mL)			3-epi-25(OH)D ₃ (ng/mL)				
norticipant data and			SRM 972a L2	VitDQAP-III	SRM 968d L1	SRM 972a L2	VitDQAP-III	SRM 968d L1	SRM 972a L2	VitDQAP-III	SRM 968d L1	SRM 972a L2	VitDQAP-III	SRM 968d L1
	Lab 026	Method	Vial A	Vial B 6.8	Control 0.3	Vial A 18.2	Vial B 26.9	Control 12.4	Vial A	Vial B 33.6	Control 12.7	Vial A	Vial B	Control 0.6
NIST results for	030a	RIA	n/a	n/a	n/a	n/a	n/a	n/a	19.8	38.4	13.1	n/a	n/a	n/a
$25(OH)D_2$ $25(OH)D_3$	056a	LC-MS/MS	0.6	6.7	0.6	18.2	25.6	12.1	18.8	32.3	12.7	1.2	1.5	0.7 p/r
$25(011)D_2, 25(011)D_3,$	060	LC-MS/MS	0.8	5.8	0.2	16.6	23.9	13.0	17.5	27.7	13.2	1.3	1.7	0.9
$3-epi-25(OH)D_3$, and	110	LC-UV	3.5	6.8	n/d	12.8	17.4	12.4	16.2	21.9	12.4	n/r	n/r	n/r
25(OH)D _{Total} in SRM	116 119	LC-MS/MS LC-MS/MS	<3.3 n/d	6.3 15.4	<3.3 n/d	21.6 19.4	28.7 25.1	13.5 11.5	21.6 19.4	35.0 40.5	13.5 11.5	<4.0 n/r	<4.0 n/r	<4.0 n/r
0729 I 2 (Vial A)	150	LC-MS/MS	<2	6.0	<2	17.0	27.0	11.0	17.0	33.0	11.0	n/r	n/r	n/r
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	161b 180	LC-MS/MS RIA	<4 n/a	7.8 n/a	<4 n/a	18.5 n/a	28.8 n/a	13.1 n/a	18.5 17.8	36.6 29.4	13.1 13.3	n/r n/a	n/r n/a	n/r n/a
VitDQAP-III (Vial B),	187	LC-MS/MS	0.0	5.9	0.0	21.5	29.3	13.3	21.5	35.2	13.3	n/r	n/r	n/r
and SRM 968d L1	188		n/a	n/a	n/a	n/a 20.6	n/a 31.1	n/a 10.6	26.6 20.6	40.6 38.0	15.0	n/a	n/a n/r	n/a n/r
(Control)	194	LC-MS/MS	<7.0	<7.0	<7.0	21.0	28.6	13.0	21.0	28.6	13.0	n/r	n/r	n/r
(Control).	196	CLIA	n/a	n/a	n/a	n/a 17.7	n/a	n/a	18.5	29.9	15.2	n/a	n/a	n/a
	197 198a	LC-MS/MS	<5 <5.0	5.7 8.7	<5 <5.0	22.5	24.3	12.2	22.5	30.0	12.2	n/r	n/r	n/r
	198c	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	17.1	28.6	5.7	n/a	n/a	n/a
	199 204b	LC-MS/MS LC-MS/MS	<2.0 n/d	5.9 6.6	<2.0 n/d	20.6 18.2	29.4 25.5	13.6 12.6	20.6 18.2	35.3 32.1	13.6 12.6	n/r n/d	n/r n/d	n/r n/d
	209	LC-MS/MS	<1.0	6.9	<1.0	20.6	29.7	14.1	20.6	36.6	14.1	n/r	n/r	n/r
	211	LC-MS/MS	0.0	6.7 8 1	0.0	18.8	26.3 28.0	12.5	18.8	32.9 32.9	12.5	n/r	n/r	n/r
	214b	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	16.6	28.4	21.2	n/a	n/a	n/a
	214c	LC-MS/MS	<1.0	5.7	<1.0	19.4	27.2	12.2	19.4	32.9	12.2	n/r	n/r	n/r
	215 216	LC-MS/MS	<2 0.8	0.0 7.1	<2 0.2	20.4 18.7	26.4 26.6	13.2 12.5	20.4 19.5	37.2 33.7	13.2 12.6	1.3	1.7	0.8
	217	LC-MS/MS	<0.8	9.0	<0.8	19.8	28.0	12.6	19.8	37.0	12.6	n/r	n/r	n/r
	218a 221b	LC-UV	n/a 0.0	n/a 5.2	n/a 0.0	n/a 19.3	n/a 25.4	n/a 14.8	17.6 19.3	31.8 30.6	13.5 14.8	n/a n/r	n/a n/r	n/a n/r
	221c	LC-MS	0.0	0.0	0.0	19.3	25.2	13.6	19.3	25.2	13.6	n/r	n/r	n/r
	225 228a	LC-MS/MS	<5 n/d	5.7	<5 n/d	21.3	32.4 24.6	15.5 12.4	21.3	38.1 31.2	15.5 12.4	n/r 1.8	n/r 2 3	n/r 0.75
	231b	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	20.0	30.4	11.9	n/a	n/a	n/a
	241	LC-MS/MS	0.7	5.5	0.3	17.0	27.9	11.0	17.7	33.4	11.3	0.7	1.1	0.7
	243a 243b	LC-UV LC-MS/MS	n/d n/d	n/d 3.9	n/d n/d	25.3 24.3	34.5 33.9	12.5	25.3 24.3	34.5 37.8	12.5	n/a 1.6	n/d n/d	n/d n/d
	244	LC-MS/MS	0.0	8.0	0.0	17.0	27.0	12.1	17.0	35.0	12.1	n/r	n/r	n/r
	249 251	LC-MS/MS	0.0 <4	6.4 7.0	0.0 n/r	19.7 22.0	25.0 33.0	12.1 n/r	19.7 22.0	31.4 40.0	12.1 n/r	1.6 n/r	1.3 n/r	0.5 n/r
	253	LC-MS/MS	0.9	7.7	0.2	19.4	27.7	12.6	20.3	35.4	12.8	n/r	n/r	n/r
	255	LC-MS/MS	0.9 p/a	6.3 p/a	0.1 p/a	18.0 n/a	26.5 p/a	13.1 n/a	18.8	32.8	13.2	n/r	n/r	n/r
	258	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	20.9	25.5	17.9	n/a	n/a	n/a
	259	LC-MS/MS	n/d	6.5	n/d	18.4	27.8	12.7	18.4	34.3	12.7	n/r	n/r	n/r
	261 262	CLIA	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	17.3 18.4	23.0 31.3	14.4 20.9	n/a n/a	n/a n/a	n/a n/a
	263	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	18.6	35.0	12.6	n/a	n/a	n/a
	267 268a	CLEIA	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	17.8 30.4	32.1 24.8	12.6 13.3	n/a n/a	n/a n/a	n/a n/a
	268b	EIA	n/a	n/a	n/a	n/a	n/a	n/a	21.1	41.4	21.8	n/a	n/a	n/a
	269	LC-MS/MS	2.8	9.8	2.1	15.3	23.9	10.8	18.1	33.7	12.9	n/r	n/r	n/r
	271	LC-MS/MS	<4	8.3	<4	15.0	23.8	11.9	15.0	32.1	11.9	n/r	n/r	n/r
	272	LC-MS/MS	0.6	7.8	0.0	18.8	27.6	12.7	19.4	35.4	12.7	1.5	1.3	0.9
	273	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	24.7	29.9	21.2	n/a	n/a	n/a

n/a = not applicable (for immunoassay methods); n/r = not reported or not determined; n/d = not detected; < X = less than a reported quantitation limit of X

<mark>NIST Value</mark>	<mark>0.81</mark>	<mark>6.49</mark>	<mark>0.1*</mark>	<mark>18.1</mark>	<mark>26.2</mark>	<mark>12.4</mark>	<mark>18.9</mark>	<mark>32.7</mark>	<mark>12.5</mark>	<mark>1.3</mark>	1 <mark>.6</mark>	<mark>0.7</mark>
U	0.06	0.17		0.4	0.6	0.4	0.4	0.7	0.4	0.1	0.1	0.03
*estimated value (no uncer	rtainty determin	ned)										

NIST/NIH Vitamin D Metabolites Quality Assurance Program Gaithersburg, MD 20899-8392

